A PROBLEM OF OPTIMUM CONTROL

(ODRA zADACHA OPTIMAL' YOGO UPRAVLBRIIA)
PMM Vol.29, Ne 5, 1965, pp.946-949
V.V.GURETSKII and B.S.FERTMAN
(Leningrad)

1. We shall investigate the control system (Fig.l)

$$
\begin{array}{cl}
x^{\bullet}=u(t), & x(0)=x^{\cdot}(0)=0 \\
0 \leqslant u(t) \leqslant u_{2} \quad(0 \leqslant \imath \leqslant T), & u_{1} \leqslant u(t) \leqslant u_{2} \quad(t>T) \tag{1.2}
\end{array}
$$

where the time $t=T$ is fixed. We shall call an arbitrary, plece-wise continuous function $u(t)$ satisfying the restraints (1.2) which has a finite number of discontinuities of the first kind on any interval $t_{1} \leqslant t \leqslant t_{2}$, an admissible control. The following variational problem now arises: to find the control signal $u=u_{*}(t)$ which is a

Fig. 1 member of the class of admissible controls and which ensures control action on the variable at $x=x_{*}$ with minimal velocity. The control $u=u_{*}(t)$ we shall call the optimum control.

Let us introduce a function

$$
\begin{equation*}
\varphi(t)=\int_{0}^{t} u(t) d t \tag{1.3}
\end{equation*}
$$

It can be seen that by (1.2), the maximum ordinate $\varphi(t)$ over an arbitrary interval $t_{1} \leqslant t \leqslant t_{2}$ is

$$
\begin{equation*}
\max _{t} \varphi(t)=\varphi\left(t_{2}\right) \quad\left(t_{1} \leqslant t \leqslant t_{2}\right) \tag{1.4}
\end{equation*}
$$

Hence, the above problem can be reformulated as follows: out of all curves $\varphi(t)$ possessing $\varphi^{\circ}(t)$, the latter satisfying the relations

$$
\begin{equation*}
0 \leqslant \varphi^{\cdot}(t) \leqslant u_{2} \quad(0 \leqslant t \leqslant T), \quad u_{1} \leqslant \varphi^{\cdot}(t) \leqslant u_{2} \quad(t>T) \tag{1.5}
\end{equation*}
$$

to find a curve $\varphi=\varphi_{*}(t)$ the ordinate of which will, at the instant $t=t_{*}$ given by the condition

$$
\begin{equation*}
\int_{0}^{t_{*}} \varphi_{*}(t) d t=x_{*} \tag{1.6}
\end{equation*}
$$

attain a minimum.
Let us now denote by Φ a set of curves (1.3) satisfying conditions (1.5) and (1.6). Let Ψ be a subset of Φ, the subset composed of continuous lines (τ, t) with different discrete slopes over particular intervals, each line dependent on the parameter τ

$$
\psi(\tau, t)=\left\{\begin{array}{lr}
u_{2} t & (0 \leqslant t \leqslant \tau) \tag{1.7}\\
u_{2} \tau & (\tau \leqslant t \leqslant T) \\
u_{2} \tau+u_{1}(t-T) & \left(T \leqslant t \leqslant t_{*}\right)
\end{array}\right.
$$

where for any $\tau<T$, the instant $t=t_{*}$ is determined from

$$
\begin{equation*}
\int_{0}^{t_{*}} \psi(\tau, t) d t=x_{*} \tag{1.8}
\end{equation*}
$$

We shall show that if the condition

$$
\begin{equation*}
t_{*} \geqslant T \tag{1.9}
\end{equation*}
$$

is satisfied, then the function

$$
\begin{equation*}
\varphi_{*}(t)=\int_{0}^{t} u_{*}(t) d t \quad\left(0 \leqslant t \leqslant t_{*}\right) \tag{1.10}
\end{equation*}
$$

where $u_{i}(t)$ is the optimum control signal anf the time $t=t * 1 s$ determined by (1.6), belongs to the set ψ. Indeed, let some curve $\varphi^{\circ}(t), 0^{*} \leqslant t \leqslant t^{\circ} \geqslant T$, where

$$
\begin{equation*}
\int_{0}^{t_{0}^{\circ}} \varphi^{\circ}(t) d t==x_{*} \tag{1.11}
\end{equation*}
$$

which is a solution of our problem, be not a member of the set γ. Let us define a point on this curve by the value of its abscissa, namely $t=t^{\circ}$, and let us draw through it a line $\left(T_{1}, t\right)$, the parameter T_{3} of which is uniquely determinable (Fig.2). If, at the same time $\Phi^{\circ}(t) \not \equiv \psi\left(\tau_{1}, t\right)$,

Fig. 2 $0 \leqslant t \leqslant t^{\circ}$, which we snail assume from now on, then, by (1.5) and (1.7), the relations

$$
\psi\left(\tau_{1}, t\right) \geqslant \varphi^{\circ}(t) \quad\left(0 \leqslant t \leqslant t^{\circ}\right)
$$

$$
\begin{equation*}
\int_{0}^{t_{0}^{\circ}} \varphi\left(\tau_{1}, t\right) d t>x_{*} \tag{1.12}
\end{equation*}
$$

will obviously be fulfilled for the ordinates of the curves in question.

Hence, we should be able to construct a line $\psi\left(\tau_{2}, t\right), 0 \leqslant t \leqslant t^{\circ}$, with the parameter $\tau_{2}<\tau_{1}$ given by

$$
\begin{equation*}
\int_{0}^{t_{0}^{\circ}} \psi\left(\tau_{2}, t\right) d t=x_{*} \tag{1.13}
\end{equation*}
$$

At $t=t^{0}$, the value of the ordinate of this line will be less than $\varphi^{\circ}\left(t^{\circ}\right)$, which contradicts the assumption that $\varphi^{\circ}(t)$ is optimum. In this manner we have reduced the initial variational problem to the problem of finding the minimum (still assuming that the inequality (1.9) is fulfilled), of the function

$$
\begin{equation*}
\psi\left(\tau, t_{*}\right)=u_{2} \tau+u_{1}\left(t_{*}-T\right) \tag{1.14}
\end{equation*}
$$

the variables T and t_{*} of which, satisfy the relation

$$
\begin{equation*}
\chi\left(\tau, t_{*}\right)=u_{2} \tau t_{*}-1 / 2 u_{2} \tau^{2}+1 /{ }_{2} u_{1}\left(t_{*}-T\right)^{2}-x_{*}=0 \tag{1.15}
\end{equation*}
$$

The unknowns T and t_{*} are found from

$$
\begin{equation*}
\partial F / \partial \tau=0, \quad \partial F / \partial t_{*} \tag{1.16}
\end{equation*}
$$

togethen with (1.15), where

$$
\begin{equation*}
F\left(\tau, t_{*}, \lambda\right)=\psi\left(\tau, t_{*}\right)+\lambda \chi\left(\tau, t_{*}\right) \tag{1.17}
\end{equation*}
$$

where λ is a multiplier. After the necessary transformations, we obtain

$$
\begin{equation*}
\tau=\frac{u_{1}}{u_{1}+u_{2}} T, \quad t_{*}^{\prime}=\frac{u_{1}}{u_{1}+u_{2}} T+\left[\frac{2 x_{*}}{u_{1}}-\frac{u_{2}}{u_{1}+u_{2}} T^{2}\right]^{1 / 2} \tag{1.18}
\end{equation*}
$$

from which it follows that (1.9) can occur if and only if

$$
\begin{equation*}
\left[\frac{2 x_{*}}{u_{1}}-\frac{u_{2}}{u_{1}+u_{2}} T^{2}\right]^{-1 / 2} \geqslant \frac{u_{2}}{u_{1}+u_{2}} T \tag{1.19}
\end{equation*}
$$

which yields

$$
\begin{equation*}
x_{*} \geqslant \frac{1+2 u_{2} / u_{1}}{\left(1+u_{2} / u_{1}\right)^{2}} \frac{u_{2} T^{2}}{2} \tag{1.20}
\end{equation*}
$$

When (1.20) is fulfilled, then the optimum control signal $u_{*}(t)$ is governed by the following law:

$$
u_{*}(t)= \begin{cases}u_{2} & (0 \leqslant t \leqslant \tau) \tag{1.21}\\ 0 & (\tau<t \leqslant T) \\ u_{1} & \left(T<t \leqslant t_{*}\right)\end{cases}
$$

where the values of T and t_{*} are determined from (1.18). The velocity of the action of the coordinate x_{*} is

$$
\begin{equation*}
\min _{u} \max _{t} x^{2}(t)=\psi\left(\tau, t_{*}\right)=u_{1}\left[\frac{2 x_{*}}{u_{1}}-\frac{u_{2}}{u_{1}+u_{2}} T^{2}\right]^{1 / 2} \tag{1.22}
\end{equation*}
$$

Next we shall show the necessity of fulfilling the condition (1.9) for the function (1.10). Indeed, let us assume that, for the curve $p_{0}(t)$, $0 \leqslant t \leqslant t_{0}$ representing the solution of the initial problem, the instant $t=t_{0}$ found by means of Formula

$$
\begin{equation*}
\int_{0}^{t_{0}} \varphi_{0}(t) d t=x_{*} \tag{1.23}
\end{equation*}
$$

satisfies the inequality $t_{0}<T$. We shall now denote by B (Pig .3) a point on the curve $p_{0}(t)$ corresponding to $t=t_{0}$ and draw through B a line

$$
\psi_{0}(\tau, t)= \begin{cases}u_{2} t & (0 \leqslant t \leqslant \tau) \tag{1.24}\\ u_{2} \tau & \left(\tau \leqslant t \leqslant t_{0}\right)\end{cases}
$$

the parameter $\tau=T_{1}$ of which is uniquely determinable. If at the same time $\psi_{0}\left(\tau_{1}, i\right) \neq \varphi_{0}(i)$, then by (1.5)
 and (1.24), the relations (1.12) in which $\psi\left(\tau_{1}, t\right), \varphi^{0}(t)$ and t° should be replaced by $\psi_{0}\left(\tau_{1}, t\right), \varphi_{0}(t)$ and t_{0}, respectively, are fulfilled. Consequently, we can construct a curve $\psi_{0}\left(T_{2}, t\right)$ with the parameter $T_{2}<\tau_{1}$ satisfying (1.13) (where ${ }^{1}\left(\tau_{2}^{2}, t\right)$ and t° are replaced by $\psi_{0}\left(\tau_{2}, t\right)$ and $\left.t_{0}\right)$. Its ordinate at $t=t_{0}$ is smaller than $\psi_{0}\left(\tau_{1}, t_{0}\right):$ Moreover, in this case (as well as in case when $\psi_{0}\left(\tau_{1}, t\right) \equiv \varphi_{0}(t)$, $0 \leqslant t \leqslant t_{0}$) we can construct a line $\psi_{0}\left(\tau_{0}, t\right)$, the parameter $\tau_{0}<\tau_{2}$ of which can be found from
Fig. 3

$$
\begin{equation*}
\int_{0}^{T} \psi_{0}\left(\tau_{0}, t\right) d t=x_{*} \tag{1.25}
\end{equation*}
$$

From this it follows that the maximum value of the ordinate

$$
\begin{equation*}
\psi_{0}\left(\tau_{0}, T\right)=u_{2} \tau_{0} \tag{1.26}
\end{equation*}
$$

of the curve $\psi_{0}\left(\tau_{0}, t\right)$ is lower than the values of $\varphi_{0}\left(t_{0}\right)$ and $\psi_{0}\left(\tau_{2}, t\right)$, which contradicts the optimum condition for $\infty_{0}(t)$ and at the same time proves the necessity of satisfying the inequality (1.9). The above gives us also a method for constructing the optimum control in case, when

$$
\begin{equation*}
x_{*} \leqslant \frac{1+2 u_{2} / u_{1}}{\left(1+u_{2} / u_{1}\right)^{2}} \frac{u_{2} T^{2}}{2} \tag{1.27}
\end{equation*}
$$

1.e. when Equations (1.18) contradict (1.9). When the relation (1.27) is fulfilled, the optimum control signal $u=u_{*}(t)$ is determined by the function $\psi_{0}\left(\tau_{0}, t\right), 0 \leqslant t \leqslant T$, and has the form

$$
\begin{equation*}
u_{*}(t)=u_{2} \quad\left(0 \leqslant t \leqslant \tau_{0}\right), \quad u_{*}(t)=0 \quad\left(\tau_{0}<t \leqslant T\right) \tag{1.28}
\end{equation*}
$$

where the instant τ_{0} of the switch-over is found from

$$
\begin{equation*}
\left.\tau_{0}=T-\left[T^{2}-2 x_{*} / u_{2}\right)\right]^{1 / 2} \tag{1.29}
\end{equation*}
$$

obtained by substituting $\psi_{0}\left(\tau_{0}, t\right)$ into (1.25).
The control action velocity on x_{*} is

$$
\begin{equation*}
\min _{u} \max _{t} x^{\circ}(t)=u_{2} \tau_{0}=u_{2}\left\{T-\left[T^{2}-2 x_{*} / u_{2}\right]^{1 / 2}\right\} \tag{1.30}
\end{equation*}
$$

and the action occurs at the instant $t=T$. It can be directly verified that on

$$
\begin{equation*}
x_{*}=\frac{1+2 u_{2} / u_{1}}{\left(1+u_{2} / u_{1}\right)^{2}} \frac{u_{2} T^{2}}{2} \tag{1.31}
\end{equation*}
$$

the switch-over instants and velocities of control actions on x_{*} obtained by means of $(1.18),(1.29)$ and of (1.22), (1.30), are in full agreement.
2. We shall now consider a solution of our problem with another condition added : that the optimum control will be maintained when $t \geqslant 0$. We shall introduce the set $\psi_{1}(F 1 g .3)$ of continuous lines $\psi_{1}(U, t), 0 \leqslant t \leqslant t_{*}$, with a parameter U

$$
\psi_{1}^{\prime}(U, t)= \begin{cases}U t & (0 \leqslant t \leqslant T) \tag{2.1}\\ U T+u_{1}(t-T) & \left(T \leqslant t \leqslant t_{*}\right)\end{cases}
$$

where $0 \leqslant U \leqslant u_{2}$, and the time t_{*} is found from

$$
\begin{equation*}
\int_{0}^{t_{t}} \psi_{1}(U, t) d t=x_{*} \tag{2.2}
\end{equation*}
$$

Utilizing our previous arguments in Section 1 , we shall show that when

$$
\begin{equation*}
t_{*} \geqslant T \tag{2.3}
\end{equation*}
$$

holds, then the function (1.10) is a nember of the set ψ_{1}, so that the initial variational problem is reduced to finding the minimum of the function

$$
\begin{equation*}
\psi_{1}\left(U, t_{*}\right)=U T+u_{1}\left(t_{*}-T\right) \tag{2.4}
\end{equation*}
$$

with the functional relation between the variables U and t_{*} given by

$$
\begin{equation*}
\chi_{1}\left(U, t_{*}\right)=U T t_{*}-1 / 2 U T^{2}+1 / 2 u_{1}\left(t_{*}-T\right)^{2}-x_{*}=0 \tag{2.5}
\end{equation*}
$$

which in turn follows from (2.2). Omitting the intermediate reasoning, we arrive at the values of U and t_{*} for which (2.4) is at minimum

$$
\begin{equation*}
U=1 / 2 u_{1}, \quad t_{*}=1 / 2 T+\left[2 x_{*} / u_{1}-1 / 4 T^{2}\right]^{1 / 2} \tag{2.6}
\end{equation*}
$$

Here the optimum control is

$$
\begin{equation*}
u_{*}(t)=1 / 2_{2} u_{1} \quad(0 \leqslant t \leqslant T), \quad u_{*}(t)=u_{1} \quad\left(T<t \leqslant t_{*}\right) \tag{2.7}
\end{equation*}
$$

and the velocity with which it acts on x_{*} at $t=t_{*}$ is

$$
\begin{equation*}
\min _{u} \max _{t} x^{*}(t)=U T+u_{1}\left(t_{*}-T\right)=u_{1}\left[2 x_{*} / u_{1}-1 / 4 T^{2}\right]^{1 / 2} \tag{2.8}
\end{equation*}
$$

From the above formulas it follows that (2.3) holds if and only if

$$
\begin{equation*}
\left[2 x_{*} / u_{1}-1 / 4 T^{2}\right]^{1 / 2} \geqslant 1 / 2 T, \text { or } \quad x_{*} \geqslant 1 / 4 u_{1} T^{2} \tag{2.9}
\end{equation*}
$$

Proof can be obtained as in the analogous case in the Section 1 . Hence, when

$$
\begin{equation*}
x_{*} \leqslant 1 / 4 u_{1} T^{2} \tag{2.10}
\end{equation*}
$$

the optimum control $u_{*}(t)$ will become

$$
\begin{equation*}
u_{*}(t)=U_{0} \quad(0 \leqslant t \leqslant T), \quad U_{0}=2\left(x_{*} / T^{2}\right) \tag{2.11}
\end{equation*}
$$

Where U_{0} is found from

$$
\begin{align*}
& \qquad \int_{0}^{T} U_{0} t d t=x_{*} \tag{2.12}\\
& \text { Velocity of control action on } x_{*} \text { at } t=T \text { becomes } \\
& \min _{\max _{t} x^{-}(t)=U_{0} T=2 x_{*} / T} \tag{2.13}
\end{align*}
$$

and we can verify directly that when the condition

$$
x_{*}=1 / 4 u_{1} T^{2}
$$

is fulfilled, the parameters U and U_{0} of the optimum controls and velocities of control action on x_{*} as calculated by means of $(2.6),(2.11),(2.8)$ and (2.13), are in full agreement.

