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1. We shall Investigate the control syatem (Flg.1) 

2" = u (t), x(0) = x' (0) = 0 (I.0 

0 d u 0) < k4 (0 a t <T), Uld u 0) d ua 0 > T) (1.2) 

where the time t = T la fixed. We shall call an arbitrary, piece-wise 
contlnuoue function u(t) satisfying the restraints (1.2) whltch<htBsC$ finite 
number of dlecontlnultlea of the flret klnd on any Interval 1~ 1 ar an 
admlselble control. The following variational problem now arlsqs: to find 

the control signal - u,(t) which la a 
'IL member of the class Ef admlsslble controls 

Ut 
and which ensures control action on the varl- 
able at x - x,, with minimal velocity. The 
control u - u,(t) we shall call the optimum 
control. 

5 
__---e--m Let UB Introduce a function 

t 

Fig. 1 
It can be seen that by (1.2), the maximum 

ordinate q(t) over an arbitrary interval 
t,<t<ra Is 

maxt rp 0) = 'P M (tl < t d t*) (1.4) 

Hence, the above problem can be reformulated as follows: out of all 
curves co(t) poaaeselng cp*(t) , the latter eatlofylng the relations 

0 dcp' (0 d kJ (6 d t < V, u1 f e' 0) G ~~2 (t > T) (1.5) 

to find a curve cp - 'p* (t) the ordinate of which will, at the Instant t- t, 
given by the condition 

1, 

s 
T.(t) dt = r* (1.6) 

0 
attain a minimum. 

Let US now denote by 0 a set of curves (1.3) satlefylng conditions (1.5) 
and (1.6). Let y be a subset of 0 , the subset composed of continuous 
lines $(~,t) with different discrete slopes over particular Intervals, each 
l.lne dependent on the parameter T 

i 

tczt (0 < t < t) 

9 (t, 1) = u2t (T < t < T) (1.7) 

UZT + ul(t - T) (TGtGt.1 
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where for any TCT, the Instant t = t, is determlned from 
t. 

s 
$ (z, t) dt = z, 

0 

We shall show that if the condition 

(W 

t, > T (1.9) 
Is satisfied, then the function 

t 

‘P+ (&I = 1 u+ (t) dt (0 B t < t+) (i.iO) 
0 

where u,+( t ) 1s the optimum control signal anf the time 
by (1.6), belongs to the set I. 

t = t + Is determined 

where 
Indeed, let some curve ‘pO (t), 0 < t < to > T, 

10 

s 
q”(t) dt = z* (1.11) 

0 

which Is a solution of our problem, be not a member of the set Y . Let us 
define a point on this curve by the value of Its abscissa, namely t I to, 
and let us draw through It a line $(T1,t) the parameter T of which Is 

lyllqLely determlnabie t Pig. 21. 

which we shBl1 assume from 
now on, ihen, by (1.5) and (1.7), the 
relations 

P 

s 
4 (G, t) dt > + (1.12) 

0' 

will obviously be fulfilled for the 
to f ordinates of the curves in question. 

Hence, we should be able to con- 
Fig. 2 struct a line Ip f7*, t), 0 < t < to, 

with the parameter T~-C r, given by 
10 

S $ (72, t) dt = z+ (1.13) 

0 

At t . to, the value of the ordinate of this line will be less than 
cpO(tO) which contradicts the assumption that q’(t) is optimum. In this 
manner :e have reduced the Initial variational problem to the problem of 
finding the mlnlmum (still assuming that the Inequality (1.9) Is fulfilled), 
of the function 

qJ (z, t*) = u2z + IL1 (t* - T) (1.14) 

the variables 7 and t, of which, satisfy the relation 

x (z, t*) = U2’t* - 1/ZU2f2 -t- l/zul (t, - T)2 - cc* = 0 (1.15) 

The unknowns T and t, are found from 

iYF/&-0, 3F /at, (1.16) 
together with (1.15), where 

F (T, t,, A) = $ (rc, tJ -I- AX (~9 t*) (1.17) 

where A Is a multiplier. After the necessary transformations, we obtain 

Ul 
z=-T 

u1+ ua ’ 
t = --& T + [‘2 - --& TB]“* * (i.i8) 
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from which it follows that (1.9) can occur if and Only if 

which yields 

When (1.20) is fulfilled, then the optimum control signal 
governed by the following law: 

242 

1 
(0 < t q 1) 

u* (1) = 0 (r<tGTT) 

141 (T<t<t,) 
where the values of 7 and +'+ are determined from (1.18). 
of the action of the coordinate X* is 

min,max, 2*(f)= *(x,&J= U1 [2 - -...%.- p]"' 
u1+ % 

11.13) 

(1.20) 

u*(t) 1s 

(1.21) 

The velocity 

(i.22) 

Next we shall show the necessity of fulfilling the condition (1.9) for 
the function (1.10). 
0 < t d t, 

Indeed, let us assume that, for the curve q,,(t) 
representing the solution of the initial problem, the instant 

t = t, found by means of Formula 

?’ s ‘PO (t) clt = 5* (1.23) 
0 

satisfies the inequality to< ip . We shall now denote by B (Fig.3) a point 
on the curve w(t) corresponding to t =to and draw through B a line 

(1.24) 

the parameter T = 71 of which is uniquely determinable. If at the same 
time $. (3, t) $:o (% then by (1.5) 
and (1.24). the relations (1.12) in 
which +$ (tl, t),@ (t) and to should be 
replaced by $0 ('tl, t), 'p. (t) and to 
resnectivels. are fulfilled. Cons& 
quently we-&in construct a curve 

B,",ii'%Ying (1 13) Fwhere 
t) with the a&meter 76 71 

to are replaced by to('rn,!{ and to). 
-r2,t) and 

Its ordjnate at t - to is smaller than 
Ilio(xl, to).: Moreover, in this case (as 
well as. in case when % (xi, t)Ecpe (6, 
O<t,<tJ we can construct a line 
Ce(70,*) the parameter To< T2 of 
which can'be found from 

T 

s $0 (Zo, t) a = x* f (i.25) 

From this it follows that the maximum value of the ordinate 

*o (to, T) = a~?~ (LX) 

of the curve $0(~0, t) is lower than the values of R(t,) and JiO(tZ,t) , 
which contradicts the optimum condition for p,(t) and at the same time 
proves the necessity of satisfying the inequality (1.9). !fhe above gives 
us also a method for constructing the optimum control in case, when 
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1 f 2~2 / u1 usT= 
x*< (l+ua/ul)a 2 

(1.27) 

i.e. when Equations (1.18) contradict (1.9). When the relation (1.27) Is 
fulfilled, the optimum control signal u = u*(t) is determined by the func- 
tion $,,(tO, t), 0 <t < T, and has the form 

a* 0) = % (0 < t < to), a* 6) = 0 (x0 < t < T) (1.28) 

where the Instant 'To of the switch-over Is found from 

x,, = T - [T2 - 2r, / ua)]“’ (1.29) 

obtained by substituting Jlo(To,t) into (1.25). 

The control action velocity on X* Is 

min,maxf z0 (t) = uzxo = ZL~ {T - [Ta - 2x, / uzlv’} (1.30) 

and the action occurs at the Instant t =P. It can be directly verified 
that on 

1 -+ 2~2 / UI uzTa 
x* = (1 + us / u1p 2 

(1.31) 

the switch-over instants and velocities of control actions on x+ obtained 
by means of (1.18), (1.29) and of (1.22), (1.30), are In full agreement. 

2. We shall now consider a solution of our problem with another condition 
added : that the optimum control will be maintained when t>O. We shall 
introduce the set VI (Flg.3) of continuous lines $,(u, t), 0 <t < t,,, with 
a parameter U 

l)lY(U, t) = Ut (0 < t .< T) 

UT + UI (t - T) (T < t d t*) 
(2.1) 

where 0 < U < u2, and the time t, Is found from 

(2.2) 

Utilizing our previous arguments In Section 1, we shall show that when 

6s > T 0.3) 

holds, then the function (1.10) Is a member of the set Y1, so that the inl- 
tial variational problem Is reduced to finding the minimum of the function 

$1 (U, t*) = UT + UI (t* - T) (2.4) 

with the functional relation between the variables U and t, given by 

x1 (U, tJ = Z;Tt, - 1/2UT2 + ‘/,u, (t, - T)? - CE* = 0 (2.51, 

which in turn follows from (2.2). Omitting the intermediate reason&g, we 
arrive at the values of U and t, for which (2.4) Is at minimum 

u = '/a Ul, t, =‘,‘zT +[2x*/ul--/dT J - 2 ‘I* 
Gw 

Here the optimum control is 

u* (t) = */zq (0 < t d T), u* (t) = zL1 (T < t < 6;) 

and the velocity with which it acts on X* at t = t, is 

min,maxt x' (t) = UT + u1 (t, - T) = u1[2x, / u1 - ‘lpT2]‘h 

(2.7) 

(2.8) 

From the above formulas it follows that (2.3) holds if and only if 
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12% I Ul - l/eTa]i’a > lJgT 
I or xt >.‘hTa 

Proof can be obtained as In the analogous case in the Section 1 
when 

the optimum control u,(t) 

% (4 = ull 

where UO Is found from 

I* < ‘l,u,Ta 

will become 

(OdtdT), U, = 2 (z, / T*) 

T 

s 
Clot dt = x+ 

0 

Velocity of control action on x* at t I T becomes 

min,maxlz’ (t) = U,T = 2x, / T 

and we can verify directly that when the condition 

I, = ‘/,ulTa 

(2.9) 

Hence, 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

Is fulfilled, the parameters U and U, of the optimum controls and velo- 
cities of control action on x, as calculated by means of (2.6),(2.11),(2.8) 
and (2.13), are in full agreement. 

!t!ranalated by L.K. 


